Amino-terminal cysteine residues of RGS16 are required for palmitoylation and modulation of Gi- and Gq-mediated signaling.

نویسندگان

  • K M Druey
  • O Ugur
  • J M Caron
  • C K Chen
  • P S Backlund
  • T L Jones
چکیده

RGS proteins (Regulators of G protein Signaling) are a recently discovered family of proteins that accelerate the GTPase activity of heterotrimeric G protein alpha subunits of the i, q, and 12 classes. The proteins share a homologous core domain but have divergent amino-terminal sequences that are the site of palmitoylation for RGS-GAIP and RGS4. We investigated the function of palmitoylation for RGS16, which shares conserved amino-terminal cysteines with RGS4 and RGS5. Mutation of cysteine residues at residues 2 and 12 blocked the incorporation of [3H]palmitate into RGS16 in metabolic labeling studies of transfected cells or into purified RGS proteins in a cell-free palmitoylation assay. The purified RGS16 proteins with the cysteine mutations were still able to act as GTPase-activating protein for Gialpha. Inhibition or a decrease in palmitoylation did not significantly change the amount of protein that was membrane-associated. However, palmitoylation-defective RGS16 mutants demonstrated impaired ability to inhibit both Gi- and Gq-linked signaling pathways when expressed in HEK293T cells. These findings suggest that the amino-terminal region of RGS16 may affect the affinity of these proteins for Galpha subunits in vivo or that palmitoylation localizes the RGS protein in close proximity to Galpha subunits on cellular membranes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ga13 Requires Palmitoylation for Plasma Membrane Localization, Rho-dependent Signaling, and Promotion of p115-RhoGEF Membrane Binding*

Most heterotrimeric G protein a subunits are covalently modified by palmitate attached to one or more N-terminal cysteine residues. Although a wide variety of proteins undergo palmitoylation, the role of this fatty acid modification in G protein signaling is not well understood. Thus, we examined the role of palmitoylation of a13, a G protein a subunit that regulates many pathways involved in c...

متن کامل

Regulators of G protein signaling exhibit distinct patterns of gene expression and target G protein specificity in human lymphocytes.

The newly recognized regulators of G protein signaling (RGS) attenuate heterotrimeric G protein signaling pathways. We have cloned an IL-2-induced gene from human T cells, cytokine-responsive gene 1, which encodes a member of the RGS family, RGS16. The RGS16 protein binds Gialpha and Gqalpha proteins present in T cells, and inhibits Gi- and Gq-mediated signaling pathways. By comparison, the mit...

متن کامل

Identification of the WNT1 residues required for palmitoylation by Porcupine.

The post-translational palmitoylation of WNT morphogens is critical for proper signaling during embryogenesis and adult homeostasis. The addition of palmitoyl groups to WNT proteins is catalyzed by Porcupine (PORCN). However, the Wnt amino acid residues required for recognition and palmitoylation by PORCN have not been fully characterized. We show that WNT1 residues 214-234 are sufficient for P...

متن کامل

Galpha 13 requires palmitoylation for plasma membrane localization, Rho-dependent signaling, and promotion of p115-RhoGEF membrane binding.

Most heterotrimeric G protein alpha subunits are covalently modified by palmitate attached to one or more N-terminal cysteine residues. Although a wide variety of proteins undergo palmitoylation, the role of this fatty acid modification in G protein signaling is not well understood. Thus, we examined the role of palmitoylation of alpha(13), a G protein alpha subunit that regulates many pathways...

متن کامل

A fluorescent probe for cysteine depalmitoylation reveals dynamic APT signaling

Hundreds of human proteins are modified by reversible palmitoylation of cysteine residues (S-palmitoylation), but the regulation of depalmitoylation is poorly understood. Here, we develop 'depalmitoylation probes' (DPPs), small-molecule fluorophores, to monitor the endogenous activity levels of 'erasers' of S-palmitoylation, acylprotein thioesterases (APTs). Live-cell analysis with DPPs reveals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 26  شماره 

صفحات  -

تاریخ انتشار 1999